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Abstract. We study numerically the behavior of two-phase flow in porous media via the parameters capil-
lary number and viscosity ratio, under steady-state conditions and various levels of saturation. We construct
a phase diagram, where the phases are defined according to whether one or both fluids move. We establish
a semi-empirical theory for the location of the phase boundaries. The steady-state conditions are obtained
by implementing biperiodic boundary conditions.

PACS. 47.55.Mh Fluid flow through porous media

1 Introduction

The field of two-phase flow in porous media is rich with
problems of a complex nature. These involve the study
of properties on many different length scales and how to
bridge the gap between the scales. Furthermore, it is of-
ten possible to distinguish between the study of invasion
processes and steady-state properties. The methods used
in this field range from a set of experimental techniques,
theoretical descriptions on different length scales to sev-
eral numerical models or methods [1,2].

In the petroleum engineering tradition, the main
source of experimental information about flow systems has
for decades been displacement experiments on core sam-
ples [3]. However, for increased theoretical or fundamen-
tal understanding, well controlled laboratory experiments
have been the key. In particular, in the eighties, the ex-
periments and simulations by Lenormand et al. led to the
development of a phase diagram for drainage, i.e., the dis-
placement of a wetting phase by a nonwetting phase [4,5].
Drainage was classified into the regimes of stable dis-
placement, viscous fingering, and capillary fingering. The
regime boundaries depend on two dimensionless numbers,
the capillary number Ca and the viscosity ratio M .

Two-phase flow consists of more than pure displace-
ment processes. The complexity of ganglion dynamics and
the existence of different regimes of flow of bubbles and
blobs have been investigated experimentally by the Pay-
atakes group [6–8]. They used etched glass networks for
their studies, varying flow parameters within large ranges.
By simultaneous injection of two fluids the experiments
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examine steady-state properties or close to steady-state
properties.

We use a simulator for two-phase flow in porous media
that is based on the Washburn equation [9], see Section 2.
This line of modeling dates back to the mid eighties to
Koplik et al. [10]. The work by the Payatakes group is a
continuation of this tradition [11,12]. Most of the work
on two-phase flow simulation has been in the actual two-
phase regime. That is to say that pure invasion processes
such as drainage were simulated until breakthrough of the
nonwetting phase. The aforementioned regimes, the phase
diagram of drainage are well established and their proper-
ties much studied. When it comes to simulations for inves-
tigating steady-state properties, the majority of the work
involves finding relative permeability curves for a wide
range of parameters. Much effort has been put into mak-
ing simulators that are specific for a given porous medium
and fluid system. Further, other simulation techniques ex-
ist. On a even more detailed scale than our modeling is
the work using lattice Boltzmann methods [13–15].

We wish here to take one step back and take a broader
look at these systems. Assuming a porous medium with
two phases, one wetting and one nonwetting with respect
to the medium, there are three possible states of flow: only
the nonwetting phase flows, only the wetting phase flows,
or both flow simultaneously. Depending on a large set of
parameters, the system will find itself within one of these
situations. Changing system parameters within appropri-
ate ranges causes the system to undergo what is called a
dynamical phase transition. Using the language of ther-
modynamics and critical phenomena, we provide in this
paper a phase diagram for steady-state flow. As was the
case for the phase diagram of Lenormand et al. the cap-
illary number and the viscosity ratio are the parameters
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of interest also in this primary study of the steady-state
phase diagram.

We use a network simulator that can do real steady-
state simulations. Phase boundaries are located by the
simulations. Further, based on the simulations a semi-
empirical theory for the location of the phase boundaries is
given. We believe that the overall structure of the phase di-
agram is universal for the two-phase flow system, whereas
the exact positions of phase boundaries will vary from sys-
tem to system.

2 Model

In order to investigate questions of interest regarding two-
phase flow in porous media, it is possible to apply methods
that count as theoretical, experimental or numerical. Ex-
perimental methods provide quantitative results for the
actual system investigated. However, results may differ
from sample to sample or from system to system. By
means of simulations the system properties can be con-
trolled to a greater extent. This is highly advantageous
when one wishes to study the effect of varying parameters
of the system.

The results of the paper are based on a network simu-
lator for immiscible two-phase flow. This line of modeling,
which is based on the Washburn equation [9], dates back
to the work of several groups in the mid 1980’s [10–12].
Our model is a continuation of the model developed by
Aker et al. [16,17]. Although a thorough presentation can
be found in [18], we provide for clarity a brief résumé of
the main aspects.

The porous media are represented by networks of
tubes, forming square lattices in two dimensions (2D),
tilted 45◦ with respect to the imposed pressure gradient
and thus to the overall direction of flow. We refer to the
lattice sites where four tubes meet as nodes. Volume in
the model is contained in the tubes and the nodes are
volumeless joining points. This is just a matter of nu-
merical convenience. Whenever needed, a certain fraction
of the volume in the tubes which join in a node can be
summed up to an effective node volume. For further de-
tails, see [18]. Randomness is incorporated by distorting
the nodes randomly within a circle around their respective
lattice positions. This gives a distribution of tube lengths
in the system. Further, the radii of the tubes are drawn
from a flat distribution so that the radius of a given tube
is r ∈ (0.1l, 0.4l), where l is the length of that tube. We
note here that this model is perfectly extendable to three
dimensions.

The model is filled with two fluid phases that flow
within the system of tubes. The flow in each tube obeys
the Washburn equation [9], q = −(σk/µ)(∆p − ∑

pc)/l.
With respect to momentum transfer these tubes are cylin-
drical with cross-section area σ, length l, and radius r.
The permeability is k = r2/8 which is known for Hagen-
Poiseuille flow [19]. Further, µ is the viscosity of the
phase present in the tube. If both phases are present,
the volume average of their viscosities is used. The vol-
umetric flow rate is denoted by q and the pressure dif-

ference between the ends of the tube by ∆p. The sum-
mation is the sum over all capillary pressures pc within
the tube. With respect to capillary pressure the tubes
are hour-glass shaped, meaning that a meniscus at po-
sition x ∈ (0, l) in the tube has capillary pressure
pc = (2γ/r)[1−cos (2πx/l)], where γ is the interfacial ten-
sion between the two phases. This is a modified version of
the Young-Laplace law [1,16].

Biperiodic boundary conditions are used so that the
flow is by construction steady flow. That is to say, the
systems are closed so both phases retain their initial vol-
ume fractions, their saturations. These boundary condi-
tions are in 2D equivalent to a flow restrained to be on the
surface of a torus. The flow is driven by a globally applied
pressure gradient. Usually invasion processes are driven
by setting up a pressure difference between two borders,
inlet and outlet. Since, by construction, the outlet is di-
rectly joined with the inlet in our system, we give instead
a so-called global pressure drop when passing a line or cut
through the system [18,20]. This is equivalent to imposing
constraints on the pressure gradient that is experienced
throughout the network. Integration of the pressure gra-
dient along an arbitrary closed path one lap around the
system, making sure to pass the ‘inlet-outlet’-cut once,
should add up to the same global pressure difference.

The system is forward integrated in time using the
Euler scheme. For each time step the distribution of the
phases leads to a recalculation of the effective viscosities
in the tubes and the capillary pressures across the menisci,
and thus the coefficients in the equations for the pressure
field. When the pressure field is known, the flow field fol-
lows automatically and the integration step may be per-
formed. Details are found in [18].

3 Phase diagrams

We present here phase diagrams for the dynamical proper-
ties of steady two-phase flow. The structure of the phase
diagram is richer than one might naively believe. First
we introduce the well-known concept of fractional flow
(Eq. (2)) and provide a basic description of the nature of
the two-phase flow system. We determine phase bound-
aries in the parameter space of saturation Snw (defined in
Eq. (1)), capillary number Ca (defined in Eq. (4)), and
viscosity ratio M (defined in Eq. (3)). The definition of
Ca is a crucial point since the definition is not unique. For
the numerical exploration of the phase diagram one defi-
nition is used consistently in all simulation series: first at
constant Ca and varying Snw, second at constant Snw and
varying Ca. While Section 3 contains simulated diagrams,
Section 4 re-addresses the definition of the capillary num-
ber and contains a semi-empirical theory for the location
of the phase boundaries that are obtained in Section 3.
Upon presenting the method of finding the phase bound-
aries, the order of the transition is briefly discussed. How-
ever, the final discussion of the order is postponed to Sec-
tion 5.
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Fig. 1. The nonwetting fractional flow is shown as a function of
nonwetting saturation for two sets of system parameters. Each
data point is a result of simulation of the model system with the
parameters in question until the system reaches steady state
and the properties are measured. At low Snw only the wetting
phase flows and at high Snw only the nonwetting phase flows.
In-between there is a region of two-phase flow. We also observe
that the transition of both curves from zero to nonzero Fnw is
continuous. The transition of × from two-phase flow to pure
nonwetting flow is continuous or weakly first order, while the
same transition for ◦ is first order. There seems to be a clear
jump in the value of Fnw as well as indications of hysteresis.

3.1 Order parameter

In steady flow the volume fractions of the wetting and
the nonwetting phase will not change with time. In our
simulation model this requirement is fulfilled by having a
closed system. The nonwetting saturation of the system is
defined as

Snw =
Vnw

Vtot
, (1)

where Vnw and Vtot are the nonwetting and total volume,
respectively. The wetting saturation Sw is defined simi-
larly. For each value of the saturation, one can in the sim-
ulations fix the total flux Qtot in the system. In order to
keep the total flux constant, the imposed pressure gradient
fluctuates in time around some typical mean value. This
mean pressure is a function of saturation and total flux.
Further, one can measure the flux of each of the phases
in the system, Qnw and Qw, respectively. One defines the
nonwetting fractional flow as

Fnw =
Qnw

Qtot
, (2)

and likewise for the wetting fractional flow. A sample of
nonwetting fractional flow as a function of nonwetting sat-
uration is given in Figure 1. The transport properties of
the system depend on dimensionless groups of system pa-
rameters, namely the viscosity ratio and capillary number.
We define the viscosity ratio as the nonwetting viscosity
divided by the wetting viscosity:

M =
µnw

µw
. (3)

Further, the capillary number is defined as

Ca = Cadyn =
Qtotµ

γΣ
, (4)

where γ is the interfacial tension between the two phases,
Σ is the cross-section area of the system(i.e. the average
diameter of the tubes times the width of the network),
and µ is the effective (weighted) viscosity of the system;
µ = Snwµnw + Swµw. Physically, the capillary number
measures the ratio between viscous and capillary forces in
the system. Use of the weighted viscosity is motivated by
the fact that when both phases flow, both viscosities play
a role in determining the relative strength of viscous and
capillary forces. We use this dynamical definition of Ca in
this section, upon the exploration of the phase space. For
convenience we leave out the subscript of Cadyn, but we
will use it in the subsequent discussion in Section 4 for
clarity.

As illustrated in Figure 1 fractional flow curves depend
on M and Ca. This dependence is nontrivial. The curves
exhibit three different regimes. For low nonwetting sat-
uration only the wetting phase flows. Likewise, for high
nonwetting saturation only the nonwetting phase flows.
These two regions are thus effectively single-phase flow in
a constraining environment consisting of both the solid
porous medium and the immobilized phase. In-between
these regions is the two-phase flow region. The cross-overs
from single-phase flow to two-phase flow are in fact dy-
namical phase transitions. We wish to study this system
with that perspective. As order parameter for the tran-
sition from single wetting flow to two-phase flow we use
the nonwetting fractional flow. Similarly we take the wet-
ting fractional flow as the order parameter for the transi-
tion from single nonwetting flow to two-phase flow. In this
way the order parameter is zero for single-phase flow and
nonzero for two-phase flow.

Having defined the order parameter, the nature of pos-
sible dynamical phase transitions in the system is well
illustrated in Figure 1. Starting at the left hand side,
the transition is from single-phase wetting flow to two-
phase flow when increasing the nonwetting saturation.
Both samples show a continuous transition. That is to
say that at least to the resolution of the curves the or-
der parameter changes continuously from zero to nonzero
values at the phase boundary. The transition of the curve
marked with ◦ on the right hand side has clear signs of
being first order. Not only can we see how the order pa-
rameter is discontinuous, but the one isolated data point
of Fw = 0.0 indicates the presence of hysteresis or history
dependence in the system. Hysteresis is typical for first
order transitions. In fact, we will use studies of hystere-
sis in order to unravel the nature of the phase diagram.
As to the other curve, marked with ×, on the right hand
side, the transition seems to be continuous or weakly first
order.

3.2 Hysteresis loops

In order to map out the phase diagram, we need a tool
that can locate the phase boundaries in parameter space.
The order of the transitions should also be determined.
Simulations of single points in parameter space to steady-
state as in Figure 1 are good for the part of parameter
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Fig. 2. The stepwise simulation of two phase transitions. In
both cases Ca = 1.00 × 10−3 and M = 10. The saturation is
changed in steps up and down past the transition. The sys-
tem is run for 7 s (physical time) at each step. (a) Starting
at single-phase wetting flow, increasing the saturation above
the transition to two-phase flow, and then lowering the sat-
uration back to the initial level, the system shows hysteresis.
(b) Starting in the two-phase region and increasing saturation
to single-phase nonwetting flow, and decreasing again, no hys-
teresis appears.

space where history effects are small. However, whenever
one is close to a first order transition the history may
give data points indicating single-phase flow or two-phase
flow. It is possible to run simulations on several statis-
tically equal realizations of the porous media, as well as
from various initial configurations, in order to find the
region where both single-phase and two-phase flow are
possible. The computations are somewhat computer de-
manding, and we have found it more efficient to simulate
entire hysteresis loops to this effect. For instance starting
at a specified saturation, at which the system has two-
phase flow, we change in a stepwise fashion the saturation
slightly, run until steady-state, and measure the fractional
flow. This is done until the system passes the transition to
single-phase flow. Thereafter the saturation is changed the
opposite way until the cross-over from single-phase flow to
two-phase flow occurs. In case of a continuous transition,
these two points of transition will be the same. However,
in case of a first order transition these points will not be
the same, and the fractional flow will appear as a hystere-
sis loop, see Figure 2a.

It is also possible to keep the saturation constant and
vary some other parameter, typically the capillary num-
ber. Similar loops are expected at first order transitions
by this procedure. The advantage of changing Ca is that
one simply has to change the total flux Qtot in the system.
This is a unique operation, while changing the saturation
smoothly is not unique. It requires that one make a choice
as to where in the system the changes should be made. In
general, we increase or decrease existing bubbles by mov-
ing the menisci that define their surface. If the system is
very fragmented, some smaller bubbles are typically also
removed in order to reach the desired new saturation.

3.3 Diagrams for constant Ca

In this subsection we study one sample of the porous net-
work of size 20 × 40. We do not yet go into the possible
dependence on size and topology, but focus on how the
results depend on the three parameters: phase saturation,
capillary number Ca, and viscosity ratio M . First we keep
Ca and M constant while we vary the saturation stepwise
over the transition from single-phase flow to two-phase
flow and back.

Examples of transitions between single-phase and two-
phase flow are shown in Figure 2. By varying the satura-
tion both ways over the transition, we observe how there
can (a), and cannot (b), be hysteresis in the transition.
Having a transition with little or without hysteresis as
in Figure 2b, leads to a quite precise determination of
the transition point. On the other hand it is not so clear
where the transition occurs for the sample in Figure 2a.
Not only are there two actual transition points, but these
two points should be expected to depend on the actual
path in parameter space. By that we mean in this case
how many steps there are in saturation, and for what time
the system is allowed to relax at each step. Further, the
variation from sample to sample, or from realization to
realization, of systems that are in principle similar, may
very well be larger when there is hysteresis of this kind.
For curves as in Figure 2b, the statistical variations are
smaller. The transitions in Figure 2 were taken to be at
(a) Snw = 0.26 and (b) Snw = 0.84. Here we employed
that convention that the system is single-phase whenever
it is single-phase in one of the simulated directions. This
definition is mainly motivated by the need of consistency
in the extraction of data points in the following. This is
in contrast to the more conventional definition, where the
transition is located at the steepest point of the order pa-
rameter curve. However, this definition leads to too much
noise in the analysis.

The range of capillary numbers studied is Ca ∈ (3.16×
10−2, 3.16×10−4). On a base 10 logarithmic scale 9 values
of Ca are chosen in steps of 0.25 from −1.50 to −3.50.
Similarly 21 values of M are chosen in steps of 0.25 in
the interval log10M ∈ (−2.50, 2.50), which means that
M ∈ (−3.16 × 10−3, 3.16 × 102).

For six of these Ca values, the resulting phase bound-
aries are shown in Figure 3 as data points. The solid
lines are constructed phase boundaries following from
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Fig. 3. The phase diagram for six selected values of Ca. The ×-marks are the transition points from the simulations. The
uncertainty in each point is not marked, but it is substantial. The scattering of points in parameter space gives an indication of
the uncertainty. Phase boundaries are indicated by solid lines, see Section 4. The phase diagrams are divided into three regions,
counting from the left hand side: single-phase wetting flow, two-phase flow, and single-phase nonwetting flow.

the semi-empirical theory given in Section 4. For now,
let us consider the lines as visual aids to better see the
phase boundaries in the diagrams. With increasing non-
wetting saturation, the two lines separate the dynami-
cal phases: single-phase wetting flow, two-phase flow, and
single-phase nonwetting flow. Observe that for high cap-
illary numbers the two-phase region spans almost all of
the saturation range. As the capillary number is lowered,
the single-phase regions grow in size. There is some kind
of symmetry between the two transitions. That is to say
the same effects occur on both sides, although not at the
same numerical values.

In order to treat the two transitions simultaneously,
we employ the following notions. Since at each transition
there is more volume of the phase that is close to single-
phase flow, we refer to this phase as the majority phase.
The other phase is the minority phase. On the left side
the majority phase is wetting and the minority phase is
nonwetting. Regarding viscosity ratios M there are basi-
cally three possibilities: viscosity matching phases, favor-
able viscosity ratio, and unfavorable viscosity ratio. Con-
sidering the system from the point of view of the majority
phase, the viscosity ratio is favorable when the majority
phase is the less viscous phase. Likewise, the viscosity ra-
tio is unfavorable when the minority phase is less viscous.
On the y-axes of Figure 3 M varies over more than four
decades. The positive side (on the logarithmic scale) is

when the nonwetting phase is more viscous than the wet-
ting phase. Thus, the viscosity ratio is favorable on the
left side and unfavorable on the right side. For negative
values of log10(M) the ratio is unfavorable on the left side
and favorable on the right side.

The general structure of the phase diagrams in Fig-
ure 3 is as follows. Firstly, for M = 1 and high capillary
numbers the two-phase region spans almost all of the sat-
uration range. As Ca is lowered the single-phase regions
on each side open up, and the two-phase region becomes
smaller. We cannot tell from the presented diagrams the
limiting behavior of the phase boundaries for small Ca.
However, roughly speaking, one observes that the depen-
dence on Ca is logarithmic (also cf. Fig. 4). It is reasonable
to expect that this behavior persists also for lower Ca.

The dependence on M is interesting. For all values of
Ca the fact that each curve has two main parts persists.
Roughly, there is one situation for favorable viscosity ra-
tios and another for unfavorable viscosity ratios. The sub-
sequent discussion of these two situations are made from
the two-phase flow point of view. The single-phase point
of view is taken in Section 4.

For unfavorable viscosity ratio (lower left and upper
right sides in each of the diagrams in Fig. 3) the phase
boundaries are almost constant with respect to the value
of M . As long as there are clear majority and minority
phases, and one phase is close to going single-phase, the
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Fig. 4. The phase diagram for three selected values of M . The simulations were performed at constant saturation, but with
varying Ca. The simulated points indicate the dynamical phase boundaries. In the lower left part of the diagrams, there is
single-phase wetting flow; in the middle upper part, two-phase flow; and in the lower right part, single-phase nonwetting flow.

minority phase consists of bubbles and ganglions that are
held back by capillary forces. It is always the case that
the minority phase is held back in this way. However,
when the viscosity ratio is unfavorable, the minority phase
flows more easily, it follows the majority phase around
when capillary forces are overcome. Notice that the noise
level increases with decreasing Ca. When the capillary
forces become relatively stronger, the motion of bubbles
involves larger fluctuations, so this behavior is expected
when properties are averaged over the same amount of
time.

A different situation appears for favorable viscosity ra-
tios. The capillary forces and viscous forces both try to
hold back the minority phase. In this situation the actual
viscosity ratio plays a role. The more favorable viscosity
ratio, the more will the minority phase slow down. Be-
cause of the capillary forces the minority phase will not
only slow down, but actually stop, and single-phase flow
results. The border between two-phase flow and single-
phase flow varies with M , as can be seen in Figure 3.
We observe the general trend that the single-phase region
increases logarithmically with increasingly favorable vis-
cosity ratio.

3.4 Diagrams for constant M

So far we have discussed the results from simulations
where the saturation has been varied over the dynami-
cal phase transition. In this subsection we present results
from simulations in which the saturation and the viscosity
ratio are held constant, while Ca is varied down and up
again over the transition. Because of history effects such
as hysteresis and the fact that saturation and Ca are not
varied in the same way, it is a priori not clear that the
phase boundaries will be the same. Therefore, we check
the results for consistency.

For nine different values of M , equidistantly dis-
tributed on a logarithmic scale between M = 1/100 to
M = 100, simulations have been performed for a large
set of saturations. The results for three selected values of
M are shown in Figure 4. For large viscosity contrasts it
turned out to be difficult to simulate very small satura-
tions of the minority phase, possibly because the transi-

tion would occur for very large capillary numbers. More
importantly, the central part of the saturation range was
also difficult to simulate, because the fluctuations in the
systems are larger in this region. One might expect that
it is possible for the system to reach either single-phase
wetting flow or single-phase nonwetting flow simply as
the result of fluctuating into that state. We found that
the fluctuations remain large for capillary numbers all the
way down to Ca = 10−6 for several samples. It is also
possible that there is a finite saturation range, where the
dynamical phase is two-phase flow for all values of Ca. We
conclude that this region therefore may be out of reach
with the simulator at hand.

The presented diagrams in Figure 4 have basically the
same appearance. They consist of three parts: single-phase
wetting flow in the lower left corner, single-phase nonwet-
ting flow in the lower right corner, and two-phase flow
in the upper middle region. Secondly, one observes that
the phase boundaries may have ending points at zero and
unity saturation for finite values of Ca. At higher values
of Ca the system has two-phase flow for all saturations.
This is expected as high capillary numbers mean vanishing
small capillary forces relative to viscous forces.

In order to compare the result from the simulations
with constant Ca and constant M , we have plotted all
nine data sets for constant M in Figure 5b. In Figure 5a
the data for constant Ca have been extracted for the same
sets of viscosity ratios as in Figure 5b and plotted using the
same axes. In both cases the curves overlap considerably
so we have chosen to use the same line style for most of the
lines. The exception is that for the three most favorable
viscosity ratios of each transition a different line style is
used. These three curves separate more and more from
the rest of the curves with increasing viscosity contrast.
Note that the range of capillary numbers in Figure 5a is
smaller than in Figure 5b. The results are not identical,
but nevertheless quite close to each other down to Ca =
10−3.5. We conclude that the two ways of performing the
simulations give consistent results.

A general feature of the diagrams in Figure 5 is that for
both the left side boundary and the right side boundary,
there seems to be a lower limit. This means that for all
viscosity ratios, the respective single-phase region on each
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Fig. 5. The phase boundaries from the simulations, of which
two subsets are shown in Figures 3 and 4, respectively, are
extracted as lines in a Snw − Ca coordinate system. Here,
M parametrizes the curves and takes the nine values M = 10x

where x = {−2.0,−1.5, ..., 2.0}.

side extends at least to this limit. Roughly speaking these
limits vary logarithmically with Ca. Again we cannot tell
if this behavior will continue for lower Ca than depicted.

4 Location of the phase boundaries

In the previous subsection the point of view taken was
that of the two-phase flow system. That is to say, we used
the dynamical definition of the capillary number, equa-
tion (4), and we asked when does one of the phases cease
to flow? Reversing the point of view is fruitful. Consider-
ing the system starting from a single-phase flow situation,
the natural question is when does the second phase start
to flow?

Being in a single-phase flow situation, although with
both phases present in the system, means that the cap-
illary number should be defined differently. Namely, the
relevant viscosity is no longer the volume averaged viscos-
ity, but the viscosity of the fluid that is actually flowing.
The wetting and nonwetting capillary number are defined
as

Caw =
Qtotµw

Σγ
, (5)

and

Canw =
Qtotµnw

Σγ
, (6)

respectively. Here, Caw is the relevant capillary number
for single-phase wetting flow, whereas Canw is relevant for
single-phase nonwetting flow.

As opposed to the qualitative statements regarding the
phase boundaries that were made in Section 3, these def-
initions of the capillary number are also quantitatively
useful. For a given system, i.e. given topology and sat-
uration, the transition to two-phase flow takes place at
a given wetting (or nonwetting) capillary number. That
means with varying value of the viscosity ratio M , which
also changes Cadyn, see equations (4) and (7), the relevant
single-phase capillary number still holds a fixed value at
the transition. This is plausible as long as the transition
to two-phase flow is continuous. In that case the amount
of minority phase flowing just after its mobilization is still
only a small fraction of the total flow, and therefore the
physical effective viscosity is still very close to the viscosity
of the single-phase that just before flew alone. However,
should the transition be first order so that a finite fraction
is mobilized at once, then for large variations in M some
corrections should be made. Nevertheless, for now we as-
sume that the single-phase capillary number governs the
location of the phase boundaries. The question of the or-
der of the transition is addressed in Section 5, and thereby
the validity of this assumption is discussed.

By combining equations (3), (4), and (6), the dynam-
ical capillary number can be written as

Cadyn =
Qtotµw

Σγ
(Sw + MSnw)

= CawSw + CawM(1 − Sw), (7)

which is useful to study the transition from single-phase
wetting to two-phase flow (left hand side of Fig. 5). Assum-
ing that there exists such a single-phase wetting capillary
number that defines the onset of mobilization of the other
phase, the corresponding value of the dynamical capillary
number is calculated in a straight-forward manner from
equation (7). In Figure 5 we observe that there is on the
left hand side a limiting line, below which there is always
single-phase flow. Since we know that this limit is obtained
for M � 1, we can take the same limit in equation (7) and
thereby identify, here on an empirical basis, that the crit-
ical wetting capillary number obeys

Cadyn = CawSw = Cal10−αlSnw . (8)

The fitted values of Cal and αl are found in the caption
of Figure 6. We note here that a similar dependency on
Ca was observed in a previous study [21]. There the de-
pendency was shown to be related to percolation theory.
It seems plausible that this is also the case here, from
which it follows that simple arguments for the behaviour
in equation (8) may not exist.

Taking the found value of Caw in equation (8) and
assuming a given value of Cadyn, we can solve for M as a
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Fig. 6. The phase boundaries in Figure 5 approach a limiting
boundary for low M (left side) and large M (right side), and
these limits are shown here. The fitted values for the constants
are: Cal = 10−2.16, Car = 10−1.48, αl = 7.04, and αr = 10.42.

function of Snw and get

M =
1 − Snw

Snw

(
Cadyn10αlSnw

Cal
− 1

)

. (9)

The interpretation is that (again for a given Cadyn) the
phase boundary is given by the set of values of M and
Snw that fulfill this relationship. This has been done for
each of the dynamic capillary numbers in Figure 3 in order
to create the solid lines for the left hand side transitions
there.

For values of Cadyn > Cal, the wetting single-phase
region does not exist for all values of M . Still the derived
expression works, but the solution only has one branch,
as one can see in Figure 3a. That is to say that the single-
phase region can only be reached for values of M larger
than a certain threshold in this case. This is not the case
for Cadyn < Cal, where there is a single-phase region for
all M .

The boundaries on the right hand side between two-
phase flow and single-phase nonwetting flow are found by
taking the limit M � 1 in equation (7), again comparing
with the empirical data in the same limit (Fig. 6). The
critical nonwetting capillary number is thus found to obey

Cadyn = CanwSnw = Car10−αrSw . (10)

This result inserted into equation (7) and solved for M
gives

M =
[
1 − Sw

Sw

(
Cadyn10αrSw

Car
− 1

)]−1

(11)

for the phase boundaries in the Cadyn-S diagram. By using
equation (11) we construct the phase boundaries shown
as solid lines on the right hand side in Figure 3. The gen-
eral good agreement between the simulated data points
and these semi-empirical, semi-theoretical lines, serves as
a confirmation a posteriori of this theoretical approach.
Indeed, we conclude that the single-phase capillary num-
ber is the relevant entity that controls the transition to

two-phase flow, rather than the more commonly used cap-
illary number defined in equation (4). However, we should
point out that from an experimental point of view, it is
the conventionally defined capillary number which is the
most relevant one.

5 Order of the transitions

So far we have only discussed the location of the dynami-
cal phase boundaries. The order of the transitions across
these boundaries should also be discussed. All the simula-
tions presented so far were done on a single system size,
namely 20×40 nodes. The main feature that distinguishes
between first and second order transition is the existence
of a divergent correlation length in the latter. However, the
identification of such a correlation length would necessi-
tate a full finite size scaling analysis, which is prohibitively
expensive when mapping a large phase space. We there-
fore use the less reliable but still indicative method of
determining whether there is a hysteresis or not.

Each simulation in Figure 3 can be categorized into
showing or not showing hysteresis. We look for the general
trend while accepting that fluctuations and randomness
play a role. Some realizations do not show hysteresis even
though all neighboring points do, and vice versa. It turns
out that the phase boundaries of Figure 3 can be divided
into two logical parts. The almost vertical line segments
where the systems have unfavorable viscosity ratio differ
from the other parts of the curves where the viscosity ra-
tio is favorable. In the vertical parts the simulations show
no or little signs of hysteresis in the order parameter. This
indicates that the transitions in these regions are contin-
uous. The fact that the curves are noisy for lower Ca in
these regions, does not affect the order. In the sloping
parts of the boundaries the order parameter exhibit dis-
continuity and hysteresis in most simulations. The level
of hysteresis increase with increasing viscosity contrast.
Hence, this indicates that the transitions in these regions
are first order.

In general, it is possible that the appearance of differ-
ent orders of the transitions is a result of finite size effects,
when the determination is based on hysteresis effects. We
have performed some selected simulations on a larger sys-
tem size; 40× 80 nodes. Comparisons between the results
of the two system sizes are found in Figure 7. The first
order transition in (b) persists also for the larger system.
If the signs of first order had been weaker for larger sys-
tem sizes, then finite size effects had been the cause for
apparent first order transitions. However, this is not the
case here. Future work with more detailed and compre-
hensive investigations are needed to answer this question
about the order with certainty.

The noisy character of the vertical parts, showing con-
tinuous transitions, can be attributed to the geometrical
heterogeneity of the system. Some parts of the system are
more active in transportation than others. In such rather
small systems self-averaging is small and by chance the
minority phase is to a larger or smaller extent placed in
inactive parts of the system. This gives a shift in position
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Fig. 7. Two samples of simulations on two different system
sizes. The saturation is Snw = 0.3 in both cases. The value of
M is the only difference between (a) and (b). The transitions
are (a) continuous or weakly first order, and (b) first order.
The important aspect is that the hysteresis effects do not get
smaller with increasing system size.

of the transition, i.e. noise, but does not affect the cor-
relation between minority phase bubbles that are placed
in active regions of the system. In fact these bubbles that
are only held back by capillary forces are all correlated
upon onset of mobilization. The motion of one bubble in
one place relieves the pressure on all other minority bub-
bles in the system. The opposite is also true, when this
bubble stops again, the pressure on the others increase
immediately and this is likely to cause the onset of mobi-
lization elsewhere. This is consistent with having infinite
correlation length in statistical mechanics at continuous
transitions.

The sloped sections of the boundaries, which from the
hysteresis loop consideration show signs of first order tran-
sitions, show different characteristics. The viscosity ratio
is unfavorable and the mobilization requires more pressure
on a bubble, but when mobilized, larger bubbles or con-
nected bubbles are involved. However, this effect is more
local in the sense that the minority phase is not moving
a little bit here and a little bit there in the form of dif-
ferent bubbles, but rather one larger region moves for a
longer time when it is first mobilized. This correspond to
a non-infinite correlation length.

6 Conclusion

This study concerns steady-state properties of two-phase
flow in porous media. Average flow properties are moni-
tored by using a network simulator on pore level. A sys-
tematic change of the system parameters: phase satura-
tion, viscosity ratio, and capillary number, is performed.
We demonstrate how the system can be in either one of
three dynamical states or phases. These are: single-phase
wetting flow, two-phase flow, and single-phase nonwetting
flow. Upon passing from one dynamical phase to another
the system undergoes a dynamical phase transition. The
phase diagram for the dynamical phases is revealed and
its properties are discussed.

By means of hysteresis we estimate the order of the
phase transitions and we find that both continuous and
first order transitions occur across different parts of the
phase-boundaries. This is connected to two very differ-
ent situations. One situation is when the viscosity ratio
is defined to be favorable with respect to the majority
phase: both capillary forces and viscous forces hold back
the minority phase from flowing, next to this transition.
The other case is when the viscosity ratio is defined to
be unfavorable: only capillary forces try to hold back the
minority phase next to the transition.

The phase diagram that is provided is for steady-state
properties. This should be set in perspective to the phase
diagrams by Lenormand et al. for drainage invasion flow
properties [4,5]. Although the fact that the system inves-
tigated is a particular steady-state two-phase flow system,
we argue that the general structure of the dynamical phase
diagram has a universally valid structure.

We find that the definition of the capillary number is of
major importance. Whereas for the actual two-phase flow
region we employ a volume averaged viscosity in the defi-
nition, it turns out that the actual locations of the phase
boundaries are determined by the capillary number based
on the viscosity of the single phase in question. Based on
the relationships between the capillary numbers (theoret-
ical part) and limiting locations of the phase boundaries
(found by the simulations) we establish a semi-empirical
theory for the location of the phase boundaries. Upon di-
rect comparison this theory is found to be in agreement
with the simulated data points.
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the Norwegian Academy of Science and Letters, for financial
support. We thank E. Skjetne for very valuable discussions, in
particular in connection with Section 4 where his contribution
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